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Introduction of the problem



Non-Small Cell Lung Cancer (NSCLC)
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• Objective: Classify 2D SPN(Solitary Pulmonary 

Nodule) image representations into benign and 

malignant for NSCLC data.

• Motivation: Early characterization of SPNs 

enables early treatment and can increase the 

survival rate. 

• Methodology: Fuzzy Cognitive Maps, Particle 

Swarm Optimization and Deep learning image 

classification.



Related work



• In [1] Apostolopoulos et al:

• Focused on the SPNs (Solitary Pulmonary Nodules) detection and developed VGG-19 
reaching 84.3% accuracy in CT scans.

• In [2] Apostolopoulos et al:

• Attained accuracy of 94% with VGG-16 with PET/CT  data.

• In [3] Apostolopoulos et al:

• Developed a 3D CNN, which achieved an accuracy of 89.68%.

• In [4] Salihoğlu et al:

• Developed a DNN (Deep Neural Network) and an Extreme gradient boosting (XGB) algorithm
to detect SPNs in PET/CT scans. XGB obtained 79% accuracy and CNN 80%.

• In [5] Shao et al:

• Implemented a 3D-CNN based to distinguish benign lesions and invasive adenocarcinoma
(IAC) in ground-glass nodules (GGNs) based on PET/CT scans.
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Dataset

111 cases of Benign

132 cases of Malignant

243 PET scans

Clinical data:

❑ SUVmax

❑ Diameter

Image data
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With the addition of:



Methodology



DeepFCM methodology
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Fuzzy cognitive maps
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• Concepts in a Fuzzy Cognitive Map (FCM) are 

representations of the key factors or variables 

within the system that capture different aspects 

of the problem domain. These concepts are 

derived from a combination of historical data 

and expert knowledge.

• FCM transforms the input knowledge into 

casual relationships among concepts of the 

system. 

• Regarding the interconnections of the system, 

they rely on the range [-1, 1], and whether an 

interconnection has a positive or negative, or 

zero value depends on the kind of connection.

• 𝑊𝑖𝑗> 0, expresses positive causality,

• 𝑊𝑖𝑗 < 0, expresses negative causality.

• 𝑊𝑖𝑗 = 0, expresses no causality.

c1 c2 c3 c4 Output

c1 0 𝑤𝑖𝑗 0 𝑤𝑖𝑗 𝑤𝑖𝑗

c2 𝑤𝑖𝑗 0 𝑤𝑖𝑗 0 𝑤𝑖𝑗

c3 0 𝑤𝑖𝑗 0 0 𝑤𝑖𝑗

c4 𝑤𝑖𝑗 0 0 0 𝑤𝑖𝑗

Output 0 0 0 0 0



Experts’ knowledge
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Input Concept

Suggested 

linguistic 

values assigned 

by experts

Linguistic 

values 

transformed 

to ranges

SUVmax->Output Strong [0.55 -0.8]

Diameter->Output Weak [0-0.4]

RGB-CNN predictions-

>Output
Very Strong [0.7-1]
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• Nuclear experts were asked to describe the 

relationships between input concepts with the output 

and they provided linguistic values in a fuzzy set 

format. 

• Fuzzy logic was employed to capture the vagueness 

and fuzziness of the relationships between the 

variables in the FCM. Traditional logic relies on 

binary values (true/false), while fuzzy logic extends 

this by allowing variables to have degrees of 

membership between 0 and 1. This flexibility enables 

the representation of uncertainty and imprecision in 

the clinical data, enhancing the accuracy of the 

classification process.

• For the interconnections, that experts did not provide 

the initial values were assigned randomly from the 

range [-1, 1].



Particle swarm optimization

• Particle Swarm Optimization (PSO) is a computation method based on the social behavior of birds included 
in a flock. PSO extracts the optimal solution to the problem among many candidate solutions. In our case 
candidate solutions are the weight matrices. 

• PSO calculations are based on the interconnection's values initialized by experts.

• PSO allows the FCM to adapt and optimize its interconnections based on the data. By iteratively adjusting 
the weights in the FCM, PSO can better represent the complex relationships between the concepts and 
improve its overall performance.

• PSO efficiently explores the solution space to find the optimal set of weights for the FCM. It leverages the 
collective behavior of particles in the swarm to search for promising regions in the solution space, guiding 
the FCM towards better solutions.
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FCM-PSO
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1. Definition of the FCM structure with nodes and initial values of 
interconnections, based on experts' knowledge. 

2. Initialization of a population of particles representing potential 
solutions. Each particle represents a weight matrix.

3. Evaluation of the fitness function by calculating the error among the 
FCM predicted values and the output.

4. Update Personal Best: For each particle, the personal best fitness value 
is computed, and the weight matrix is stored.

5. Update Global Best: A comparison is conducted among the personal 
best fitness values of all particles and the global best fitness value is 
computed among all particles.

6. Update velocities and positions based on PSO mathematical equations 
to adjust the weights to global best.

7. Repeat steps 3 to 6 for a specified number of iterations or until FCM 
reaches convergence.

8. When the iterations are through or FCM terminates the weights 
correspond to the global best solutions are attained.

9. The final weight matrix is evaluated in the testing dataset.

Begin

2. Initialize group 

of particles

3.Evaluate pBest 

for each particle

4.Current 

position is 

better than 

pBest

Update 

pBest

5.Assign pBest 

to gBest

6.Update 

particle 

position and 

velocities

8.Target 

reached

End

True

True
False

False
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RGB-CNN

Benign

Malignant

Input data Conv2D-Max Pooling-Dropout Flatten
Dense 

layer
Output

Dense 

layer
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Preprocessing of image data:

• Data shuffle

• Data split

• Data augmentation (Width_shift_range, 

height_shift_range,shear_range, zoom_range)

40x40 16 filters 32 filters 64 filters 64 nodes 32 nodes

IISA 2023, University of Thessaly, Volos, Greece



Integration of clinical and image data



Integration of clinical and image data
Integration approach includes:

• Fill missing values of clinical data.

• Each column of the clinical data represents an input concept.

• The extracted predictions from RGB-CNN are added as extra concept to the DeepFCM.

• Oversampling with sampling strategy all to generate data.

• One output concept to characterize the classification output
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Metrics & results



Metrics

• Accuracy: Accuracy is a measure of how well a classification model 
correctly predicts the labels of the data points. It is calculated as the 
ratio of correctly predicted instances to the total number of instances. 

• Loss: Loss is a value that quantifies the error between the predicted 
output and the actual target. 

• Sensitivity: (Recall or True Positive Rate): Sensitivity measures the 
proportion of positive instances correctly identified by the model. 

• Specificity: Specificity measures the proportion of negative instances 
correctly identified by the model. 

• Precision: Precision measures the proportion of correctly predicted 
positive instances out of all instances predicted as positive by the 
model.

• Accuracy: 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

• Sensitivity: 
𝑇𝑃

𝑇𝑃+𝐹𝑁

• Specificity: 
𝑇𝑁

𝑇𝑁+𝐹𝑃

• Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
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True Positives (TP): The number of positive instances correctly predicted as positive.
False Positives (FP): The number of negative instances incorrectly predicted as positive.
True Negatives (TN): The number of negative instances correctly predicted as negative.
False Negatives (FN): The number of positive instances incorrectly predicted as negative. 



Results
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10-fold cross validation was applied to 

ensure DeepFCM’s generalization to results.



Produced DeepFCM model
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• CNN prediction has the strongest relationship 

with the output, meaning that the output is 

highly dependent on the prediction value 

produced by the RGB-CNN. 

• The SUVmax variable has a strong causality 

with the output, as well, meaning that SUVmax 

has a high impact on the classification outcome. 

• Diameter has a weak relationship with the 

output, which indicates that the diameter by 

itself does not provide adequate information 

about the patient’s status regarding NSCLC. 
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Input Concept

Linguistic 

values 

transformed to 

ranges

SUVmax->Output [0.55 -0.8]

Diameter->Output [0-0.4]

RGB-CNN predictions-

>Output
[0.7-1]DeepFCM's produced interconnections 

between input and output concepts are in 

agreement with the nuclear physicians.



Conclusions



Conclusion of DeepFCM implementation

• The research study demonstrates impressive outcomes using the DeepFCM model, which can serve 
as a comprehensive tool for supporting decision-making in nuclear medicine and especially SPN 
malignancy characterization for early detection of NSCLC using both image and clinical data. 

• DeepFCM provides:

➢ Integration of both clinical and imaging data.

➢Explainability with providing interconnections among concepts.

➢High performance metrics.
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Future work
➢Future work will involve integrating state equations for FCM learning. 

➢The integration of the CT image may provide better results, as it can capture more 
geometrical information regarding the suspicious SPNs. 



Thank you for your time!
Any Questions ?
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